博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ-3352 Redundant Paths
阅读量:5235 次
发布时间:2019-06-14

本文共 4064 字,大约阅读时间需要 13 分钟。

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Line 1: Two space-separated integers: F and R
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Line 1: A single integer that is the number of new paths that must be built.
Sample Input
7 71 22 33 42 54 55 65 7
Sample Output
2
Hint
Explanation of the sample:
One visualization of the paths is:
1   2   3    +---+---+         |   |        |   |  6 +---+---+ 4       / 5      /     /  7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
1   2   3    +---+---+     :   |   |    :   |   |  6 +---+---+ 4       / 5  :      /     :     /      :  7 + - - - -
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7
Every pair of fields is, in fact, connected by two routes.
It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.
 

题目所求即为把无向图中缩点为一棵树后,再加边使之成为一个边双连通块。所加边数即为(叶子节点数+1)/2,加边方法为每次取两个LCA最远的叶节点,在他们两个中间连一条边,重复取直到加完。

 

注意:这道题两点之间会有多条边,不能简单的判断 To = father ,必须判断是否为同一条边。因为边为无向边,所以不知道 i+1 和 i-1 那一条和 是同一条边。这里介绍一种妙不可言的方法,把每条无向边的编号赋值为这条边的权,所以只需判断两条边权是否相同即可。

 

 

1 #include  2 #include 
3 #include
4 #include
5 #include
6 #include
7 #include
8 #include
9 #include
10 #include
11 #include
12 #include
13 #include
14 using namespace std;15 #define ll long long16 #define file(a) freopen(a".in","r",stdin); freopen(a".out","w",stdout);17 18 inline int gi()19 {20 bool b=0; int r=0; char c=getchar();21 while(c<'0' || c>'9') { if(c=='-') b=!b; c=getchar(); }22 while(c>='0' && c<='9') { r=r*10+c-'0'; c=getchar(); }23 if(b) return -r; return r;24 }25 26 const int inf = 1e9+7, N = 5007, M = 10007;27 int n,m,num,Deep,f[N],dfn[N],low[N],cd[N];28 bool b[N];29 stack
s;30 struct data31 {32 int nx,to,ds;33 }da[M];34 35 inline void add (int fr,int to,int ds)36 {37 da[++num].to=to, da[num].nx=f[fr], da[num].ds=ds, f[fr]=num;38 }39 40 inline void tarjan (int o,int fa)41 {42 int i,to;43 dfn[o]=low[o]=++Deep; b[o]=1;44 for (i=f[o]; i; i=da[i].nx)45 {46 to=da[i].to;47 if (da[i].ds == da[fa].ds) continue;48 if (!dfn[to]) tarjan (to,i), low[o]=min(low[o],low[to]);49 else if (b[to]) low[o]=min(low[o],dfn[to]);50 }51 b[o]=0;52 }53 54 int main()55 {56 // file("POJ-3177");57 n=gi(), m=gi();58 int i,j,x,y;59 for (i=1; i<=m; i++)60 {61 x=gi(), y=gi();62 add (x,y,i), add (y,x,i);63 }64 for (i=1; i<=n; i++) if (!dfn[i]) tarjan (i,0);65 for (i=1; i<=n; i++)66 for (j=f[i]; j; j=da[j].nx)67 {68 x=low[da[j].to], y=low[i];69 if (x != y) cd[y]++;70 }71 x=0;72 for (i=1; i<=n; i++) if (cd[i] == 1) x++;73 printf ("%d\n",(x+1)/2);74 return 0;75 }

 

 

欢迎在评论区提问质疑!

 

 

转载于:https://www.cnblogs.com/y142857/p/6883240.html

你可能感兴趣的文章
MyBatis课程2
查看>>
桥接模式-Bridge(Java实现)
查看>>
如何破解域管理员密码
查看>>
Windows Server 2008 R2忘记管理员密码后的解决方法
查看>>
IE11兼容IE8的设置
查看>>
windows server 2008 R2 怎么集成USB3.0驱动
查看>>
Foxmail:导入联系人
查看>>
vue:axios二次封装,接口统一存放
查看>>
vue中router与route的区别
查看>>
js 时间对象方法
查看>>
网络请求返回HTTP状态码(404,400,500)
查看>>
Spring的JdbcTemplate、NamedParameterJdbcTemplate、SimpleJdbcTemplate
查看>>
Mac下使用crontab来实现定时任务
查看>>
303. Range Sum Query - Immutable
查看>>
图片加载失败显示默认图片占位符
查看>>
【★】浅谈计算机与随机数
查看>>
解决 sublime text3 运行python文件无法input的问题
查看>>
javascript面相对象编程,封装与继承
查看>>
Atlas命名空间Sys.Data下控件介绍——DataColumn,DataRow和DataTable
查看>>
Java中正则表达式的使用
查看>>